3D Mikroskop Kullanılarak Çevrimdışı Oluşturulmuş İmzalarda Fulaj Ölçümü ve Aidiyet Tespitinde Kullanılabilirliği

Yazarlar

DOI:

https://doi.org/10.17986/blm.1704

Anahtar Kelimeler:

3D Dijital Mikroskop- Orijinal imza- Taklit- Kalem basıncı- Bakarak taklit- Serbest taklit

Öz

Amaç: Yazı ve imza karşılaştırmalarında en sık kullanılan tanı kriterlerinden biri de baskı derecesi ve baskı derecesi değişiklikleridir. Ancak günümüzde uygulamada bu kriter yalnızca göz ile veya görüntü iyileştirici aparatlar kullanılarak tahmini olarak değerlendirilmektedir. Bu durum, kişiden kişiye değerlendirme farklılıklarının çıkmasına neden olabilmekte ve zaten subjektifliği ile eleştirilen adli yazı ve imza incelemelerinde yargılamada sıkıntılara neden olabilmektedir. Bu çalışmada baskı derecesi derinliğinin offline olarak atılmış olan imzalarda nümerik olarak ölçümü ve daha klasik yöntemlere göre daha objektif olarak değerlendirilebilmesi amaçlanmıştır.

Yöntem: Çalışmaya 10 erkek ve 10 kadın denek katılmıştır. Deneklerden, örnek olarak gösterilen imzayı üç farklı zeminde taklit etmeleri istenmiştir. Bu imza denekler tarafından, her zeminde üçer defa çalışmadan önce ve çalıştıktan sonra taklit edilmiştir. İmzanın üzerinde belirlenen 5 farklı noktadan Leica DVM-6 3D mikroskop ile derinlik ölçümleri alınmış ve orijinal imza ile kıyaslanmıştır.

Bulgular: Farklı kombinasyonlar göz önüne alınarak yapılan karşılaştırmalarda, farklı güven aralıklarında istatistiksel olarak anlamlılık ifade edecek şekilde farklılıklar bulunmuştur.

Sonuç: Sonuç olarak kalem baskı derecesindeki benzerliğin yanı sıra farklı kişilerde, farklı noktalarda kalem baskı derecesinde görülen farklılıklar da önemli bir kriterdir. Bu farklılıklar t-testi uygulanarak incelenmiş ve istatistiksel olarak anlamlı bulunmuştur.

İndirmeler

İndirme verisi henüz mevcut değil.

Kaynaklar

Gianelli P.C. The Supreme Court's Criminal Daubert Cases. Seton Hall. L. Rev.. 2002;33:1071

Jarman K.H., Hanlen R.C., Manzolillo P.A. Handwriting examination: Moving from Art to Science. Pacific Northwest National Lab.(PNNL), Richland, WA (United States); 1999 Apr 9. https://doi.org/10.2172/15001462 DOI: https://doi.org/10.2172/5703

Sulner A. Critical Issues Affecting the Reliability and Admissibility of Handwriting Identification Opinion Evidence-How They Have Been Addressed (or Not) Since the 2009 NAS Report, and How They Should Be Addressed Going Forward: A Document Examiner Tells All. Seton Hall L. Rev.. 2017;48:631. DOI: https://doi.org/10.2139/ssrn.3062250

Best practice manual for the forensic examination of handwriting. ENFSIBPM-FHX- 01, Version 02, June 2018

Committee on Identifying the Needs of the Forensic Sciences Community, National Research Council. Strengthening forensic science in the United States: a path forward. Washington, DC: National Academies Press, 2009

Vastrick T.W., Schuetzner E., Osborn K. Measuring the Frequency Occurrence of Handwritten Numeral Characteristics. J Forensic Sci. 2018 Jul;63(4):1215-20. https://doi.org/10.1111/1556-4029.13678 DOI: https://doi.org/10.1111/1556-4029.13678

Xu Z., Srihari S.N. Bayesian network structure learning and Inference Methods for Handwriting, Proceeding of 12th International Conference on Document Analysis and Recognition;2013 1320 – 1324: Washington, DC https://doi.org/10.1109/ICDAR.2013.267 DOI: https://doi.org/10.1109/ICDAR.2013.267

Davis L.J., Saunders C.P., Hepler A., Buscaglia J. Using subsampling to estimate the strength of handwriting evidence via score-based likelihood ratios, . Forensic Sci Int. ,2012;216:146-157. https://doi.org/10.1016/j.forsciint.2011.09.013 DOI: https://doi.org/10.1016/j.forsciint.2011.09.013

Bozza S., Taroni F., Marquis R., Schmittbuhl M. Probabilistic evaluation of handwriting evidence: likelihood ratio for authorship, Journal of the Royal Statistical Society, 2008;57:329-341. https://doi.org/10.1111/j.1467-9876.2007.00616.x DOI: https://doi.org/10.1111/j.1467-9876.2007.00616.x

Bennour A., Djeddi C., Gattal A., Siddiqi I., Mekhaznia T. Handwriting based writer recognition using implicit shape codebook. Forensic Sci Int.. 2019 Aug; 1;301:91- 100. https://doi.org/10.1016/j.forsciint.2019.05.014 DOI: https://doi.org/10.1016/j.forsciint.2019.05.014

Chen X.H., Champod C., Yang X., Shi S.P., Luo Y.W., Wang N., Wang YC., Lu Q.M. Assessment of signature handwriting evidence via score-based likelihood ratio based on comparative measurement of relevant dynamic features. Int J of For Sci. 2018 Jan 1;282:101-10. https://doi.org/10.1016/j.forsciint.2017.11.022. DOI: https://doi.org/10.1016/j.forsciint.2017.11.022

Agius A., Morelato M., Moret S., Chadwick S., Jones K., Epple R., Brown J., Roux C. Using handwriting to infer a writer’s country of origin for forensic intelligence purposes. Int J of For Sci. 2018 Jan 1;282:144-56. https://doi: 10.1016/j.forsciint.2017.11.028 DOI: https://doi.org/10.1016/j.forsciint.2017.11.028

Johnson M.E., Vastrick T.W., Boulanger M., Schuetzner E. Measuring the frequency occurrence of handwriting and handprinting characteristics. J Forensic Sci. 2017 Jan;62(1):142-63. https://doi.org/10.1111/1556-4029.13248 DOI: https://doi.org/10.1111/1556-4029.13248

Srihari SN., Huang C., Srinivasan H. On the discriminability of the handwriting of twins, J Forensic Sci., 2008;53:430-446. https://doi.org/10.1111/j.1556-4029.2008.00682.x DOI: https://doi.org/10.1111/j.1556-4029.2008.00682.x

Hepler A.B., Saunders C.P., Davis L.J., Buscaglia J. Score-based likelihood ratios for handwriting evidence, Forensic Sci Int.2012;219:129-140. https://doi.org/10.1016/j.forsciint.2011.12.009 DOI: https://doi.org/10.1016/j.forsciint.2011.12.009

Srihari S.N. Computational methods for handwritten questioned document examination. NIJ Report 232745, 2010, Award Number:2004-IJ-CX-K050

Raymond M., Bozza S., Schmittbuhl M., Taroni F. Handwriting evidence evaluation based on the shape of characters: Application of multivariate likelihood ratios, J Forensic Sci., 2011;56:238-242 82. https://doi.org/10.1111/j.1556-4029.2010.01602.x DOI: https://doi.org/10.1111/j.1556-4029.2010.01602.x

Biedermann A., Voisard R., Taroni F. Learning about Bayesian networks for forensic interpretation: An example based on the problem of multiple propositions, Science and Justice, 2012;52:191-198. https://doi.org/10.1016/j.scijus.2012.05.004. DOI: https://doi.org/10.1016/j.scijus.2012.05.004

Taroni F., Marquis R., Schmittbuhl M., Biedermann A., Thiery A., Bozza S. The use of the likelihood ratio for evaluative and investigative purposes in comparative forensic handwriting examination, Forensic Sci Int., 2012 Jan;214:189-194. https://doi.org/ 10.1016/j.forsciint.2011.08.007. DOI: https://doi.org/10.1016/j.forsciint.2011.08.007

Marquis R., Schmittbuhl M., Mazzella W.D., Taroni F. Quantification of the shape of handwritten characters:a step to objective discrimination between writers based on the study of the capital character O, Forensic Sci Int., 2005;150:23-32. https://doi.org/ 10.1016/j.forsciint.2004.06.028 DOI: https://doi.org/10.1016/j.forsciint.2004.06.028

Srihari S.N., Singer K. Role of automation in the examination of hand written items, Pattern Recognition, 2014;47:1083-1095. https://doi.org/10.1016/j.patcog.2013.09.032 DOI: https://doi.org/10.1016/j.patcog.2013.09.032

Tang Y., Srihari S.N. Likelihood ratio estimation in forensic identification using similarity and rarity, Pattern Recognition, 2014;47:945-958. https://doi.org/10.1016/j.patcog.2013.07.014 DOI: https://doi.org/10.1016/j.patcog.2013.07.014

Gould, J., Clement, S., Crouch, B., & King, R. S. Evaluation of photometric stereo and elastomeric sensor imaging for the non-destructive 3D analysis of questioned documents–A pilot study. Science & Justice, 2023;63(4), 456-467. https://doi.org/10.1016/j.scijus.2023.04.016 DOI: https://doi.org/10.1016/j.scijus.2023.04.016

Aşıcıoğlu F. Differences in writing and signature due to changing conditions and factors. Aşıcıoğlu F ed. Handwriting and signature examinations in forensic sciences. İstanbul, Öner Print, 2007; 33-45 (Turkish translate).

Birincioğlu İ., Kurtaş Ö., Çakır İ., Turan N. “The Concept of Impression in Handwriting Analysis”, 6th Anatolian Forensic Sciences Congress, 6-9 Sep. 2007 Manisa, Proceeding, Celal Bayar University Matbaası, Manisa 2007, pp. 125-129. (Turkish translate).

Kurtaş Ö. Basic definitions and rules in handwriting (elements of handwriting diagnosis). Aşıcıoğlu F, ed. Handwriting and signature examinations in forensic sciences. İstanbul, Öner Print, 2007; 33-45. (Turkish translate).

Çakır İ. Working principles and practical use of devices used in the field of forensic document examination.Aşıcıoğlu F., ed. Handwriting and signature examinations in forensic sciences. İstanbul, Öner Print, 2007; 46-68 (Turkish translate).

Shanteau J., Stewart T.R. Why study expert decision making? Some historical perspectives and comments. Organizational Behavior and Human Decision Processes. 1992 Nov 1;53:95-95. DOI: https://doi.org/10.1016/0749-5978(92)90057-E

Gatouillat A., Dumortier A., Perera S., Badr Y., Gehin C., Sejdić E. Analysis of the pen pressure and grip force signal during basic drawing tasks: The timing and speed changes impact drawing characteristics. Computers in biology and medicine. 2017 Aug;1;87:124-31. https://doi.org/10.1016/j.compbiomed.2017.05.020 DOI: https://doi.org/10.1016/j.compbiomed.2017.05.020

Cho K.I., Lee S.S., Ahn S. Inventors; Electronics, Telecommunications Research Institute, assignee. Device for measuring writing pressure of electronic pen. United States patent application US 13/535,507. 2013 Jun 6.

Hook C., Kempf J., Scharfenberg G. New pen device for biometrical 3D pressure analysis of handwritten characters, words and signatures. InProceedings of the 2003 ACM SIGMM workshop on Biometrics methods and applications 2003 Nov 8 (pp. 38-44). ACM. https://doi.org/10.1145/982507.982515 DOI: https://doi.org/10.1145/982507.982515

Mohammed LA, Found B, Caligiuri M, Rogers D. The dynamic character of disguise behavior for text-based, mixed, and stylized signatures. J Forensic Sci. 2011;56 Suppl 1:S136-S141 https://doi.org/10.1111/j.1556-4029.2010.01584.x DOI: https://doi.org/10.1111/j.1556-4029.2010.01584.x

Li C.K, Wong S.K., Chim L.C.J. A Prototype of Mathematical Treatment of Pen Pressure Data for Signature Verification. J Forensic Sci, 2018; 63: 275-284. https://doi.org/10.1111/1556-4029.13491 DOI: https://doi.org/10.1111/1556-4029.13491

Mohammed L, Found B, Caligiuri M, Rogers D. Dynamic characteristics of signatures: effects of writer style on genuine and simulated signatures. J Forensic Sci. 2015;60(1):89-94. https://doi.org/10.1111/1556-4029.12605 DOI: https://doi.org/10.1111/1556-4029.12605

Caligiuri MP, Kim C, Landy KM. Kinematics of signature writing in healthy aging. J Forensic Sci 2014;59(4):1020-1024. https://doi.org/10.1111/1556-4029.12437 DOI: https://doi.org/10.1111/1556-4029.12437

Yayınlanmış

2024-08-01

Sayı

Bölüm

Araştırma Makalesi

Nasıl Atıf Yapılır

1.
Kaya D Öner, Çetin G. 3D Mikroskop Kullanılarak Çevrimdışı Oluşturulmuş İmzalarda Fulaj Ölçümü ve Aidiyet Tespitinde Kullanılabilirliği. Bull Leg Med. 2024;29(2):127-137. https://doi.org/10.17986/blm.1704