Violence Prediction on Somatization and Emotional Self Awareness with Machine Learning Methods
DOI:
https://doi.org/10.17986/blm.1385Keywords:
violence, somatization, emotional self awareness, machine learningAbstract
This study is intended to predict the violent victimization of individuals through the classification algorithms of supervised learning, one of the methods of machine learning through somatization and emotional self-awareness concepts, and 149 (27%) male and It consists of a total of 552 participants, including 403 (73%) women. Personal Information Form, Somatization Scale and An Emotional Self Awareness Scale-10 (A-DÖFÖ-10) were used as data collection tools in the study. K-Nearest Neighbor, support vector machines, Naive Bayes and logistics regression were used, one of the classification algorithms frequently used in machine learning; the performance comparison of the relevant classers was made according to the model performance criteria. Given accuracy and f1-score values, the best classification performance was derived from Logistics Regression with 0.74 accuracy and 0.82 f1-score value. Accordingly, it is possible to say that the methods of machine learning through somatization and emotional self-awareness concepts can be estimated at a certain rate of accuracy of the victimization of violence of individuals.
Downloads
References
Türk Dil Kurumu. Şiddet. http://sozluk.gov.tr/ erişim tarihi: 13.12.2019.
https://www.nisanyansozluk.com/?k=%C5%9Fiddet. erişim tarihi: 13.12.2019.
Güleç H, Topaloğlu M, Ünsal D, Altıntaş M.(2012) Bir kısır döngü olarak şiddet. Psikiyatride Güncel Yaklaşımlar, 4(1):112-137. https://doi.org/10.5455/cap.20120408. DOI: https://doi.org/10.5455/cap.20120408
World Health Organization (2002). World report on violence and health. Geneva: WHO. World Health Organization
Mil, H.İ. ve Şanlı, S. (2015). Sporda Şiddet ve Medya Etkisi: Bir Maçın Analizi. Elektronik Sosyal Bilimler Dergisi, Güz-2015 Cilt:14 Sayı:55 ss:231-247. DOI: https://doi.org/10.17755/esosder.54183
Karslı, N.(2016). Psiko-sosyal Açıdan Şiddet ve Çözüm Yolları. Dinbilimleri Akademik Araştırma Dergisi. 16(3):63-89
Özgentürk, İ. , Karğın , V. ve Baltacı , H (2012). Aile İçi Şiddet ve Şiddetin Nesilden Nesile İletilmesi. Polis Bilimleri Dergisi Cilt:14(4):55-77.
Kayı, Z., Yavuz, M. F., & Arıcan, N. (2000). Kadın Üniversite Gençliği ve Mezunlarına Yönelik Cinsel Saldırı Mağdur Araştırması. Adli Tıp Bülteni, 5(3), 157-163. https://doi.org/10.17986/blm.200053421. DOI: https://doi.org/10.17986/blm.200053421
Krantz, G.& Garcia-Moreno, C. (2005). Violence against women. J Epidemiol Community Health. 59 (10): 818-821. 10.1136/jech.2004.022756. DOI: https://doi.org/10.1136/jech.2004.022756
Leithner, K., Assem-Hilger, E., Naderer, A., Umek, W., Springer-Kremser, M. (2009). Physical, sexual, and psychological violence in a gynaecologicalpsychosomatic outpatient sample: prevalence and implications for mental health. Eur J Obstet Gynec Reprod Biol; 144: 168–72 DOI: https://doi.org/10.1016/j.ejogrb.2009.03.003
Akdemir, P ., Görgülü, A., Çınar, Y . (2008). Yaşlı İstismarı ve İhmali. Hacettepe Üniversitesi Hemşirelik Fakültesi Dergisi , 15 (1) , 68-75 . Retrieved from https://dergipark.org.tr/tr/pub/hunhemsire/issue/7845/103307
Davis, M. (2018) The Intersection of Intimate Partner Violence Perpetration, Intervention and Faith. Arts & Sciences Electronic Theses and Dissertations. 1524. https://openscholarship.wustl.edu/art_sci_etds/1524
Okan İbiloğlu, A. (2012) Aile İçi Şiddet. Psikiyatride Güncel Yaklaşımlar-Current Approaches in Psychiatry;4(2):204-222. https://doi.org/10.5455/cap.20120413 DOI: https://doi.org/10.5455/cap.20120413
Kesebir S (2004) Depresyon ve Somatizasyon. Klinik Psikiyatri, Ek 1:14-9.
Stuart, S. & Noyes, R. Jr.(1999) Attachment and interpersonal communication in somatization. Psychosomatics;40:34-43. DOI: https://doi.org/10.1016/S0033-3182(99)71269-7
Tatar, A., Özdemir, H., Çelikbaş, B., & Özmen H. E. (2018). A Duygusal Öz Farkındalık Ölçeği’nin Geliştirilmesi ve Klinik Olmayan Örneklemde Duygusal Öz Farkındalığın Kaygı ve Depresyondaki Rolünün İncelenmesi. Social, Mentality and Researcher Thinkers Journal, 4(13), 793-806. https://doi.org/10.31576/smryj.125 DOI: https://doi.org/10.31576/smryj.125
Oh, J., Yun, K., Hwang, J-H. and Chae, J-H. (2017) Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales. Front. Psychiatry 8:192. https://doi.org/10.3389/fpsyt.2017.00192 DOI: https://doi.org/10.3389/fpsyt.2017.00192
Chekroud, A.M., Zotti, R.J., Shehzad, Z., Gueorguieva, R., Johnson, M.K., Trivedi,M.H., Cannon, T.D., Krystal, J.H. & Corlett, P.R. (2016) Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 3, 243–250. https://doi.org/10.1016/S2215-0366(15)00542-8 DOI: https://doi.org/10.1016/S2215-0366(15)00471-X
Yöntem, M. ve Adem, K. (2019). Otomatik Düşüncelere Makine Öğrenme Yöntemlerinin Uygulanması ile Aleksitimi Düzeyinin Tahmini. Psikiyatride Güncel Yaklaşımlar , 11 () , 64-78 . https://doi.org/10.18863/pgy.554788 DOI: https://doi.org/10.18863/pgy.554788
Alpaydın, E. (2018). Yapay Öğrenme (4.Baskı). Boğaziçi Üniversitesi Yayınevi.
Uyulan, Ç., Tekin Ergüzel, T. ve Tarhan, N. (2019) Elektroensefalografi Tabanlı Sinyallerin Analizinde Derin Öğrenme Algoritmalarının Kullanılması. The Journal of Neurobehavioral Sciences: 6(2): 108-124. https://doi.org/10.5455/JNBS.1553607558 DOI: https://doi.org/10.5455/JNBS.1553607558
Yılmaz Akşehirli, Ö., Ankaralı H, Aydın D, Saraçlı Ö. (2013) Tıbbi Tahminde Alternatif Bir Yaklaşım: Destek Vektör Makineleri. Türkiye Klinikleri Biyoistatistik Dergisi;5(1):19-28.
Arslan, İ. (2019). Python ile Veri Bilimi (1. Baskı). Pusula 20 Teknoloji ve Yayıncılık.
TÜİK (2018) Türkiye İstatistik Kurumu İstatistikleri. https://tuik.gov.tr/. erişim tarihi: 17.02.2020.
Dülgerler, Ş. (2000). İlköğretim okulu öğretmenlerinde somatizasyon ölçeğinin geçerlik ve güvenirliği. Ege Üniversitesi Sağlık Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir.
Balaban, M. E., Kartal E., (2015). Veri Madenciliği ve Makine Öğrenmesi (1.Baskı). İstanbul: Çağlayan Kitabevi
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2020 The Bulletin of Legal Medicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal and content of this website is licensed under the terms of the Creative Commons Attribution (CC BY) License. The Creative Commons Attribution License (CC BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.